请上传宽度大于 1200px,高度大于 164px 的封面图片
    调整图片尺寸与位置
    滚轮可以放大缩小图片尺寸,按住图片拖动可调整位置,多余的会自动被裁剪掉
取消
接地气的陈老师(uid:712483)
职业资格认证:尚未取得认证
数据分析,这样才算读懂数据
经常有同学抱怨,在公司里,总被催着问:通过数据,你看到了什么?可实际数据就几个曲线而已,也不知道咋解读。也没有人教,自己好不容易写了几句,又被嫌弃:“你这都是废话,我们要深层次含义”。咋办?今天系统解答一下。就举个最简单的例子,下边是某公司一周销量数据,你看到了什么?   错误的数据解读示例 1、高了表扬低了骂。数据解读,写的是:周一到周五很高,周六、周日低,所以要!搞!高!……这么解读当然会被说:你这都是废话啊!业务又不是瞎子,看不到数字是周六日低吗。 2、哪里跌了哪搞高。因为周六跌了48%,所以要搞高……这个是废话*2和上一种说法是一个模子里刻出来的。 3、加减乘除算不停。平均值95.2,最大值125,最小值35……这个是废话*3。平均95.2所以呢?最大值125所以呢?这还是在把数字复述一遍而已,没有讲出任何含义。 解读的关键是理清业务含义   以上三种错误的共同点,是:就数论数,止于数据。没有读出数据背后的业务意义。其实数据解读一点都不高深,我们每月每天都在用,比如: 业务部门做决策也一样。他们想听的是:不划算、不喜欢、买不起。他们更想听的是:“今天中午预算只有人均50,在这家川菜馆既管饱又好吃”,他们想听的绝不是“2公里内共28家餐厅,平均价格63元,最高价725元,最低价13元,较上个月价格提升了10%”——这真的是一点意义都没有。   想要得出这种判断,需要三个条件: 1、了解数据代表的现实含义 2、了解数据大小代表的现实区别 3、明确判断标准   比如大众点评上饭店人均金额185元。它不是一个孤零零的数字,而是填肚子的成本,这是人均金额的现实含义。成本低了可以接受,高了就吃不起,这是数据大小的现实区别。比如我一个月餐费预算只有3000块,意味着每天只有100块钱,这就有了标准。那这一顿185,明天就得吃土了。这就形成了判断:太贵了,得换个地方。   解读企业数据也如此,不能只见数据,不见业务。同样三点: 1、业务含义:数据反映的是什么业务 2、业绩走势:通过数据形态,解读业务发展走势 3、判断标准:到底什么算好,什么算不好 下边我们一个个看一下   从理解业务含义开始   回到开头的例子,“销售业绩”这个指标本身有很多含义。 直接含义:销售队伍的努力程度 销售业绩+成本:企业的盈利情况 销售业绩+产品:产品畅销程度 销售业绩+用户分层:用户的需求 销售业绩+库存:产品进销存管理质量 但是注意:这里并没有标准,因此无法判断是好是坏。这也是为什么直接下结论:业绩低了要搞高,是非常错误的行为。销售业绩直观反映的是销售队伍的努力程度,想知道这个数值是好是坏,我们可以直接去问“销售队伍的KPI达标了多少?”;也可以从业绩曲线走势来判断。这就需要做第二步:观察业绩走势。 观察业绩走势   一个问题:“什么样的产品会卖出这种曲线?”因为有七天的数据,所以可能代表了三种走势:   1、这是自然周期性变化。七天代表了一周,周一到周五是工作日,周六周日是休息日,所以这是一个工作日销售多,休息日没销售的产品——是滴,你很自然联想到,这可能是B2B的交易,工作日上班了才有大把生意,周日都休息了。或者是围绕B2B的衍生生意,比如CBD的餐厅一类。   2、这是生命周期性变化。有可能某个主打商品销售到了生命周期末尾,正在退市,下一款新的马上要上,暂时变化。注意,一般看生命周期数据,是从生命周期开始做T+N天的图来看,不是看自然日。   3、这是突发性变化。有可能刚好周六日出了问题,交易系统down机,有可能刚好促销活动到周六日结束,有可能刚好周六日恶劣天气。   通过对走势的判断,可以建立初步的标准。如果是周期性变化,那很有可能是正常波动,我们初步判做“正常”。如果是突发+下跌,那很有可能是异常且坏的波动,我们可以初步判做“问题”。有了标准,就能下判断,只是三种假设都有可能,需要进一步验证。   列出假设做验证   想知道自己思考的对不对,就得去验证假设。验证假设的办法有两种:第一,可以和业务部门沟通,了解实际情况。第二,可以参考过往数据,验证判断,同时反向验证业务部门是不是撒谎了。数据验证可以做的很复杂,但也能做的很简单。不需要很复杂的逻辑,只要一根曲线就够了。如下图。   只要延长时间,靠一根业绩走势+业务表现,也可以解读出变化的原因。如果过往一直都是有周期性波动,那拉长时间就能看出来周期规律。   实际企业经营中,也经常出现上边三种情形,只是形态更复杂,往往是三种混合。比如B2C零售和B2B销售是反着的: 1、自然周期性:周五到周日高,其他工作日低; 2、生命周期性:新品上市到下市有季节性规律 3、突发事件:大促销(猛涨)恶劣天气(猛跌)   在看数据的时候,往往会在业绩曲线上打上标签,比如一个日期是否节假日,是否某重点产品生命周期结束,是否突发情况。这样,可以从看似无规律的曲线里区分出规律来。这也是为啥很多经验丰富的业务人员,即使没有专门的数据分析,也能快速判断形势的原因。因为他们很了解业务上发生了啥事,了解过往业绩曲线形态。结合业务表现看走势,比盲目的算同比、环比、平均数,中位数要有用得多。   深入细节看问题   做完上一步,只是帮大家理解了数据含义,并没解答什么问题。如果止于上一步,就会变成业务的应声虫:“业绩下降是因为下大暴雨了”“这是正常波动,周末肯定要跌啦”……只是单纯的这么解读,很有可能会换来一句:“我早知道了”。   实际上,往往人们都会注意到突发性急病,容易缺失的是对慢性病的观察。比如下图: 如果只看日数据,会感觉似乎每天波动不大,只能略微感到月头比月尾似乎高那么一点。但是如果拉长看周数据,就会发现问题。为什么在业绩好的月份,最后一周不冲刺业绩了?上月业绩好+月底不冲刺+本月开局格外好,这个曲线走势不和规律,很有可能是这就是B2B销售中的“藏业绩”行为。这时候,做数据分析的也能对一线业务说:我早知道了。甚至还能从下个月初吐出多少单,反推出来他们每个人藏了多少业绩。   这也是为啥实际企业经营中,我们不止看孤零零一个数,而是搭一个数据指标体系,还要做日报、周报、月报的原因。日报用来关联业务动作,反应突发问题,周报和月报用来追踪趋势,发现更深层次的问题。深层次的问题,再由专题分析解决。这样就构成了数据分析体系,系统化作战,才有威力。   当然,实际分析场景会更复杂。有可能经过数据解读,我们得出的是:“销售在藏单,真实业绩比数据体现的更好”这种结论,但到底是不是藏了,真实的又是多少,还得成立专项,深入分析。但无论如何,我们都比只回复一句:“要搞高!”要进步了很多,也能赢得业务的尊重。 解读数据是个硬技能 有同学会说:既然让数据分析师自己猜这么难,为什么不直接沟通业务的需求呢?是滴,理论上最佳的状态,是业务和数据之间有定期沟通,业务陈述需求,数据反馈结论。不过大部分企业,这个状态不存在。大部分企业都是大家各忙各的,数据忙于爬表出数应付日常各种报表,业务忙着干活撕逼。部门之间深沟高垒,几乎没有沟通,越大的公司越是如此。   再加上,很多人对数据分析本身认识不清,还停留在“一个仙风鹤骨的道长掐指一算,口出出惊世憾俗之言”的印象中。共同作用,导致了文章开头的问题。因此数据分析师不能单纯指望业务把什么问题都梳理好了丢给自己,还是得有主动解读的能力的。   文末是一则广告 恰逢三八女神节活动,女性用户购买原价99元的《商业分析入门,用数据分析方法解决企业问题》课程,活动后只需49元,欢迎学习~
数据分析师,这样才能指导运营,而不是被人追着要数
数据分析如何助力运营,直接上干货,开整!   问题场景:某电商公司,近期通过数据发现有大量用户出现添加商品至购物车但不付款(简称:加购未购)的情况,运营已针对此情况开展工作,但领导们不满意,要求数据分析组通过用户画像模型进行加购未购客群分析,提升付款比例。假设你是该公司的数据分析师,问……   问题1:你是数据分析师,你第一件事做什么? 看过去3个月加购未购的数据走势 建立用户画像模型 进行加购未购客群分析 进行付款率分析 和运营聊聊他们在干啥 先思考这道问题。如果这个题目想不明白,那思考下个题目 问题2:在本场景里,领导的需求是什么? 需要用户画像模型 需要客群分析报告 需要提升付款比例 需要改善运营工作 先思考这道问题。如果这个题目想不明白,那思考下个题目 问题3:你在网站买东西,以下哪个最能让你下决心付款 网站服务器里多了一段代码 网站工作人员写的ppt 你看到了新上市的爆款iphone 你看到了新上市的爆款iphone且比其他地方都便宜 你看到了新上市的爆款iphone且比其他地方便宜500多块钱 思考一分钟,揭晓答案哦  1  运营优化项目,从这里做起 数据分析之所以做了没屁用,80%是脱离实际,闭门造车的结果。脱离实际,闭门造车的根源,在于做数据的人太沉迷于数据本身,忘了真正要干啥。比如本案例场景,如果扒皮抽筋的问上边三个问题,傻子都会看明白: 1、用户只会为了一个具体价格的具体商品买单,不会为ppt、代码买单。 2、领导需要的是改善运营工作,运营工作对应的是文案、活动、页面、价格。 3、改善运营工作,得先整明白人家在做什么,到底有多少空间可以改善。 4、至于算法、模型、报告、公式、甚至数字,都是寻找改善方法的一种手段。 所以第一时间,得去找运营谈这些: 1、目前针对该客群有哪些措施 2、各项措施上线时间点 3、领导具体不满意表现 注意,第一步要了解的是具体动作,至于这个动作的好坏,可以听运营解释,但是更多的要自己去分析。结合数据趋势,发现潜在机会点和问题点(如下图)   这里沟通的技巧也很重要。注意,在本场景里,领导们的不满已经是挂在脸上的,这时候在运营面前,要坚决表现出:“我是和你们一起想办法,我们一起把这个差交了”。这样才能争取到更多支持。如果摆出一副:“我牛逼,你们都是傻逼”的态度,那就等着被人各种掣肘,最后落魄收场吧 。    2  第二个关键问题 问题4:经了解,发现运营目前的做法是,按加入购物车的金额的10%派券,比如100元商品派10元,200元派20元,无差别派券。了解到这个以后,你会做…… 建立用户画像模型 撰写客群分析报告 分析付款比例曲线 拆分商品转化情况 先思考这道问题。如果这个题目想不明白,那思考下个题目 问题5:你会如何证明,你对加购未购问题产生了积极作用 汇报用户画像模型 汇报客群分析报告 汇报付款比例曲线 汇报运营效果变化 先思考这道问题。如果这个题目想不明白,那思考下个题目   问题6:以下哪种情况,能证明新策略产生了效果(如下图)   思考一分钟,揭晓答案哦    3  破局,从这里开始   人的普遍心理就是:等得越久,期望值越高。特别在已经开始着急的时候,就更希望能快速见到效果。 所以在本场景里,用户画像也好,模型也好,报告也好,都对,但是首要考虑的是:多长时间见效。见效越快越好。 同时,见效的方法越简单越好。因为越复杂的方法,能参与进来的人越少,意味着自己背的锅越大。 比如上一个“超精准购买模型”,除了做数据的谁都看不懂。那最后如果效果不好,势必只有做数据的自己背锅。这又牵扯到:“写多少行代码能让顾客消费”的问题。总之,不要指望代码,要和运营并肩作战,优先丢优惠券。 可能很多同学听了:见效又快又好,就觉得难办。注意,这里“见效”也是有好几种效果的。用最简单的投入产出比概念,减少投入,增加产出,提高比率,都算有效。所以,从一开始就不要把目标定为彻底解决问题,而是不断优化效果。这样既容易交差,又能持续见成绩。 这样梳理后,思路就清晰多了:目前的全面派券是很粗暴的做法,不同商品的利润率不一样,这么简单粗暴打折,很有可能严重压缩毛利,甚至出现负毛利产品。同时,有些商品临近保质期,可以释放更多利润出来清货,有些商品本身利润很高,有空间再释放出来。这样梳理完,第一阶段的行动就很清晰了(如下图)    4  迭代,持续优化效果 问题7:以下两个选择,先做哪一个? 减少成本 增加产出 注意,本场景,是领导已经不满意了,都找到外部门了。这种情况下,如果上来就说:“我们还要追加XXX万投入”,要么本直接喷回来,要么领导们期望值会被吊得更高,以为追加以后效果无敌好。 这两种情况都是在给自己挖坑!所以最好先从砍成本的角度入手,先砍掉一个明显负产出的补贴,释放营销费用;之后再做一些临期产品、清库存产品;之后再拿释放出来的费用贴高利润产品,把加购转化率拉高。 之后还可以持续迭代,比如高利润产品的转化率已经提高的前提下,可以做价格弹性测试,适当减少补贴,再释放一波营销费用;单品做的差不多了,可以拿释放出的利润做满减、或者交叉销售。 这些还都是单纯的在价格上做文章,数据计算难度小,又容易见效。毕竟给的是真金白银的优惠券。 这样折腾下来,不但能见效,而且能拖很长时间。每个月试点,迭代四五次,至少也能拖个半年。这半年宝贵的时间,可以拿来为“人工智能算法推荐”“大数据用户画像洞察”做数据积累,也能争取到充足的时间训练模型。 在价格玩的差不多的时候,就能自然续上,效果持续优化,人人开心。比一开始憋大招,憋半年然后屁用,没有灰溜溜的走人,要强的多(如下图)。 编辑于 2021-8-2 17:18
数据分析体系是什么?该怎么搭建?
有同学问:经常听到“搭建运营分析体系、搭建业绩监控体系、搭建商品分析体系”等等要求。可到底数据分析体系是什么?似乎经常看到的,只有AARRR五个字母,又语焉不详。到底怎样才算是建了个体系?今天我们系统解答一下。 144606 搭建数据分析体系,是从初级数据分析向高级发展的必备一环。留心看哦。 1搭建数据分析体系的常见错误 ▌ 1、罗列指标,没有重点。很多文章一讲数据分析体系,就铺陈了大量指标。先看哪个,后看哪个,根本没说明。光把几百个指标理解一遍都要半天,业务啥也不用干了,每天就在这瞅数好了。 ▌ 2、陷入细节,没有目标。很多同学习惯性列了指标,就开始按时间、渠道、区域、用户等级拆分,拆来拆去,标出一堆涨了跌了。问题是没个具体标准。每天纠结:1%的变化到底是不是问题?百分之几是问题?参见【数据分析终极一问:指标波动有多大,才算是大!】 ▌ 3、不分职责,贪大求全。很多文章一列标题就是《电商指标体系》《运营指标体系》甚至是《互联网指标体系》,可实际上像BATT,一个公司十几个BU几十条业务线,都看一套指标?单纯运营就分:用户、产品、数据、新媒体、社群、活动、商品、渠道……几十种运营,也看一套指标?这些大而全的总结,总是看似有理,实际不好用。 最终导致的恶果,就是自嗨型数据报表。看似罗列几百指标,拆分数十维度,每天更新累得夯吃夯吃,可一看,报表打开率不到10%。运营、产品、销售们遇到问题,还是提临时取数单,每天光跑临时取数就跑到断手指…… O(╥﹏╥)o 2 什么是数据分析体系 如字面意思,数据分析体系包含两点: 1、数据分析:意味着不能光罗列数据,而是要对数据做解读,解释数据背后的业务含义,找到对业务有用的点。 2、体系:意味着不能毫无逻辑的铺陈数据,而是有节奏、有主次、有顺序地展现数据。这样才能更有效率地支持业务,而不是埋没在无穷无尽的码sql里,也能更好地积累分析经验。 把数据报表、专题报表串起来,有层次地展现,应用到业务中,才是真数据分析体系。 3 搭建数据分析体系的基本思路 数据分析本质是为业务服务的。尽可能多地帮助业务工作,少浪费业务时间,才是服务宗旨。所以,在搭建数据分析体系时,要先问自己: 1、我在为谁们服务?2、他们中每一位,有什么工作职责?3、提供什么样数据,能更好帮助他们工作?4、在什么时间提供帮助,能更少干扰他们? 这就是搭建数据分析体系的基本思路。 ▌ 第一步:认准服务对象 企业有部门分工,因此第一步要认准:我在为哪个部门服务。这非常关键!因为即使同一个问题,不同部门的关注点会不同。同样是销售问题,如果是销售部看,关注的是每一支销售队伍完成率、进度、质量。如果是供应链看,那关注的就是总量、各产品数量、需求高峰期。如果是风控看,那关注的就是回款、坏账、套利。认清部门,有利于了解真正需求点。 其次,部门内有职级高低,要具体区分:谁需要看报表,他的责任与关注点是什么。同样是销售,部门领导关注的是下属队伍的排兵布阵,重点在什么区域,主打什么产品。每一个销售人员,关注的是要跟进哪个客人、跟进哪一步、见人说什么。一般来说,越是管理层就越关注策略问题,越是基层就越关注执行问题。 即使有些看起来一个人也能办的事,在企业里也有分工合作。比如公众号发文章,似乎一个人就能写,可在企业场景里,人家有专业的名字叫:新媒体运营。也有细致的工作分工。 144607 ▌ 第二步:明确工作目标 清晰了人以后,要认清每个人的工作目标。量化目标,是数据分析的灵魂。后续评价工作的好坏,判断业务走势正常还是异常,探索解决问题的办法,都是从计算目标和现状的差距开始的。这一点非常非常重要。很多做数据的同学陷入细节,做的报表看不出所以然,都是因为压根不知道到底数值是几才算好导致的。 业务目标并不都是“1个亿小目标”这种简单粗暴的形式。细分之下,可以有多种类型,比如常见的:1、按达成时间分:年、季度、月2、按委任形式分:长期任务/临时任务3、按服务对象分:自身/其他部门4、按服务对象分:领导/组长/员工5、按流程位置分:结果型目标/过程型目标 继续拿新媒体运营举例,一个小组,可能同时背着多个目标: 144608 注意:不同目标之前有逻辑关系。比如年度的涨粉任务,可能由促销活动涨粉、裂变涨粉、爆款文案涨粉、自然增长多种形式组成,一个大目标对应多个小目标。把各种目标按大小归属、时间顺序梳理清楚,就有了分析体系的基础框架。后续,我们可以跟着这个框架来跟踪目标完成情况,诊断运营效果。这就推进到了下一步。 ▌ 第三步:跟踪业务走势 有了清晰的责任人、目标,就可以跟踪业务走势。在跟踪的时候,首先关注的是:目标达成情况。对于目标达成率监督,涉及到后续一系列行动判断,遇事先判断轻重缓急,再看细节(如下图)。 144609 需要注意:不同等级的人,关注重点不同。还拿新媒体举例子,具体负责内容的小哥,可能要对每一篇稿子负责;负责投放的小哥,要对每一次投放效果负责;单次执行不好,就得进行复盘,总结问题。但作为运营组的组长,可能更关注整体KPI达成情况,一篇文章不行,只要从其他文章能补回来就行。 很多基于传统企业场景的数据分析体系,写到这就结束了。请注意,做到这一步只能算完成了“数据监督体系”的建设。因为仅仅看目标数量和完成率,是知其然、不知其所以然的状态。我们并不能回答“为什么做得不好?该改善什么?”这种问题。想要回答得更细,就得深入到业务过程中,了解具体行动。(传统企业停在这里,更多是传统的门店、业务员销售模式缺少数据记录,不代表不想深入做)。 ▌ 第四步:了解业务行动 想要改善一个业务,就必须了解这个业务。大部分的业务比我们想象得要复杂。比如新媒体运营,不做的同学可能想当然地认为:不就是写个文章吗?我看阅读数、转发数这些数据不就好了……可实际上,细看之下,一篇文章可能有很多业务细节(如下图): 144610 了解业务行动,分解业务细节,是为了“找到数据可以帮助的点”。数据不是万能的,比如一个新媒体小哥写文章,数据不能只告诉他怎么写。但是具体到业务细节,数据可以提供很多参考,如下图所示: 144611 这一步,是提升数据分析质量的关键。拆解业务行动,找到数据的帮助点,我们就能在跟踪进度的时候,进一步分析问题,这就推动到了一下步。 ▌ 第五步:复盘行动结果 对业务行动细节很了解,就能复盘行动结果,总结经验。数据的优势,不是直接生产出超人的创意,而是事后总结出普遍的经验。优秀的业务能力永远是稀缺资源,是不可复制的。但通过数据分析复盘,可以把明显的作死行为总结出来,避免普通人犯错。 就像写文案,指望每个创作者都成为半佛仙人这种圣手是不可能的,但是能总结出:1、时政类话题热点转化率低于情感类50%,不用来做转化。2、周四、周六推送阅读低于其他时间40%,不做推送3、链接跳转超过3步,转化率下降30%,控制篇幅4、… 有分析结论,就已经能帮助运营规避大量坑点。即使偶尔采坑失败,也败得明白:“没办法了,必须这个点发文,亏一点阅读就亏一点”。做业务从来不怕失败,怕的是败得不明不白。如果能长期积累,业务方经验越来越丰富,遇到问题的思路也越来越清晰了,就真正发挥了数据的作用。但是,问题不是一成不变的,因此数据分析体系也要不断迭代升级。 4数据分析体系迭代升级 牢记这个标准:坚守目标,迭代方法,积累经验。这是数据分析体系建设的基本方法,底线,也是最高要求。在这个原则下,数据分析体系迭代升级路线如下图所示: 144612 1、设定目标后,分月、周、日报表,跟踪目标完成率。2、在目标达成出现问题时,先判定轻重缓急,再看细节。3、针对重点问题,提供临时性支持,探索原因,解决问题。4、根据经验指导后续工作,沉淀有效方法,指导以后目标制定 这样的体系运作,业务部门也很轻松:平时只要看几个核心KPI达成率即可,平安无事就不用担心,趋势向坏的时候能及时收到预警。想要思路,也能有足够素材用,使用体验非常爽。而数据分析师本身,固定KPI、业务支持做成数据产品,个案分析做专题。产品和专题做多了,也好体现个人成绩。总比无休无止写sql,写了也不知道干啥去了强得多。 5 小结 建设数据分析体系,本质是个“从业务中来,到业务中去”的事。需要大家多在内部花心思。 然而,很多新手太过纠结理论、方法、模型,忽视、无视、轻视业务。觉得别人的工作没技术含量,“不就是发个文章”“不就是忽悠客户”,只有自己的算法才是真牛逼无双。遇到问题,不会细致地和业务沟通,只会上各个数据分析微信群问:“有没有XX指标体系啊,最好是权威、标准、BAT认定版的”。这就南辕北辙了,最后只会换来一句:你这不符合我们公司情况啊。 好的数据分析师,要像眼科医生一样。配眼镜可能有很多专业的方法,有很多专业的工具,可在配的过程中,却医生纠结的不是自己的理论,而是关注用户看得清不清楚,不断问用户“这样可以吗?这样更清楚吗?再这样试试呢?”用专业的方法服务个性化需求,这才是专业的人干的事。与大家共勉。 更多分析体系、指标体系考核体系的搭建,陈老师在《商业分析入门,用数据分析方法解决企业问题视频课》视频课程中有生动讲解,最近618活动,课程有9折的优惠,原价99元的课程,限时优惠79元! 点击图片跳转课程详情页 144613 编辑于 2021-6-17 16:12
它是最给力的数据分析体系,却被90%的新人忽略!
日、周、月、季、年报制度,可能是数据分析领域最大的一个“咕咚来了”。每一个新人在进公司的时候,都会得到一个类似传家宝一样的日、周、月报模板,交接工作的前辈会告诉你:“对着模板更新它们,然后指定发给某某某几个人”。 至于: l 为啥要发l 为啥做成这样l 发了人家看不看 从来没人解释过 新人往往也懒得问。毕竟在各种朋友圈文章里,模型才是终极归宿,报表算啥玩意。于是这些常规报表变成了天天都得干,干了还没啥用的鸡肋。更要命的是,临时取数仍然源源不绝,让人苦不堪言(如下图) 144335 今天我们就来系统讲解下,到底为啥要搞日、周、月、季、年报,它们到底有啥意义。 1 日、月、周、季、年报制度的深层意义 如果一进医院,就让你先花1万块钱,验血、验尿、X光、全身CT等等干一轮,你会很开心的说:“分析好详细耶,我好开心哦”不? 不会!你会骂:这踏马哪里来的庸医。为啥要这么复杂! 原因本质,在于:详细的数据报告是要花时间和成本的,而不是所有问题都值得花这个时间和成本。因此需要分级识别,分级处理机制。这样才能实现成本效益最大化。因此才衍生出:体温计、血压表这种简单的工具。轻度问题简单诊断就处理掉,重度问题再层层升级。 这就是日、周、月、季、年报制度诞生的初衷:快速识别问题,分层分级处理。并且日、周、月、季、年报,基本的数据监控指标、维度都是固定的,因此可以实现自动化,从而解放数据分析师的生产力,把精力释放到专题分析/数据建模上,从而实现很大的产出。 于是你会发现: 报表使用率低的公司,数据分析师加班多,绩效不明显,业务越喜欢事事要数。报表使用率高的公司,专题/建模机会反而更多,业务看着报表就能搞80%的事。 可以说,报表是整体数据分析体系核心。报表做好,处处好,报表做不好,人肉sql写到老。而且,日、周、月、季、年报,不是简单的把同一个字段按五个时间周期统计五遍,五种工具间相互配合,才能起到更好效果。 2 日报的作用 日报的作用:监控走势,发现短期问题。每日的数据,往往是直接供一线销售、生产、客服来看的。这样能掌握客户数、订单量、交货量、来电数、投诉数,这些每日要处理的工作情况,尽快开展工作,把手头的任务完成。 对产品、运营、策划这些后台岗位而言,每日数据除非有特别大的波动,否则单看一天意义不大。一般只在关键节点,比如大促、新功能上线等关键节点,盯得特别紧。 日报数据,更大价值在于连起来看。连起来看能发现周期性数据趋势,这样能通过每日曲线,快速判断业务是否有问题,特别是其中的重大波动,能立即识别出来。很方便快速发现问题点。至于能不能快速定位问题点,则要看日报的数据能拆接到什么颗粒度(如下图) 144336 3 周报的作用 周报的作用:监控走势,发现长期问题。周报的数据也会给一线看,但是应用场景不一样。周报一般是周总结会的时候用。对于一线岗位,周总结会是一个小型激励、认可、学习的场景,可以帮助团队成员发现执行问题,确认执行进度。 对产品、运营、策划这些后台岗位而言,周报和日报一样,不见得每个数字都有意义,但是连起来看,意义就很重大了。周报适合发现长期性趋势问题。特别是产品版本更新,积分、会员类长线运营机制上线以后,只看一两天数据,很容易被当天特殊情况掩盖问题,看周变化趋势,更容易追根溯源,找到问题源头。 144337 4 月报/季报的作用 月报的作用:衡量KPI,调整策略。大量公司的KPI/OKR是按月定的,工资/奖金一般也是按月发的,因此月度的数据统计,常常用来考核绩效,制定/调整策略。工作月例会讨论的时候,也不会停留在简单看结果,喊口号上,而是会对上月情况做较深度的复盘,特别是重大项目,新上线产品,团队业绩等等。 因此月报不等于四周周报之和,更不等于三十天日报加总。月报一般报完结果,直接切入当月重点议题,一般有: l 本月待完成的重点工作l 上月未解决疑难问题l 潜在问题/机会点盘点l 年度目标跟进/决策 周报、日报中发现的,未能及时解决的疑难问题,会在月报中以专题的形式呈现。特别是这些疑难问题影响到本月/下月KPI达成时,这就形成了待深入的重点问题,可以持续解决。 季报:针对季度规划,安排战术执行。季度报是月报的升级版,起的作用和月报类似,针对季度重点问题进行回顾,针对潜在疑难杂症进行解析。有的公司是直接跳过了季报这个环节的,但是在季节性强的公司,比如服装、生鲜这种季节性产品更替,或者依靠特定季节大促销/展会带业绩的行业,季报的重要性就特别高。每季度都会对当季重点工作进行安排。 5 年报本该这么用 年报:盘点年度经验,得到特定目的。注意:很多时候,年度报告不是为了解决问题,而是为了邀功请赏,激励士气,装点门面的。因此年报要怎么写,直接和写出来给谁看,想达成什么目的。 比如2020年,最大的黑天鹅是疫情,不同的目的,自然写法不同:1、问题分析版:疫情对年度业绩影响,对业绩走势改变2、邀功请赏版:疫情以后恢复真快!我们队伍超厉害3、装点门面版:全行业受影响下,我们不是最惨的,我们还挺好4、激励士气版:每个团队都涌现出年度英雄人物5、新年预期型:2020年哪些态势会延续,哪些到此为止,明年又如何 所以年度盘点不是日报*365,如果写得不好,八成是没整明白:到底人家想看啥。别再搜模板了,认真把年度汇报对象,场合,语境,目的整清楚。 6 规矩是从啥时候开始坏掉的 既然日周月季年的体系这么好使,为啥还有开篇的囧境呢? 答:从偷懒的新人开始搞内卷的时候。 不止是数据新人,运营,产品,策划新人都有以下通病: ★ 偷懒之一:喜欢搞一张巨大的,n多指标的电商/互联网/O2O指标体系大全,然后死记硬背有啥指标,没有时间概念*1★ 偷懒之二:不看走势,只看单点,没有时间概念*2,最喜欢问“GMV下降30%怎么分析”“日活下降50%怎么分析”★ 偷懒之三:不联系业务每日动作,只会拉一堆维度来过做交叉:“GMV下降30%怎么分析?答:从渠道/客群/产品等维度做拆解,拉交叉表,哪个柱子短了就是哪个的问题……”,还是没有时间概念*3 偷懒的结果,就是看数据的时候只会纠结一点的高低,忽视趋势,忽视规律,忽视业务影响。对指标的基本走势、合理范围缺少判断能力。一惊一乍,涨个1%也要分析,跌个1%还要分析。对着每日数据纠结,反而忽视了周趋势变化,容易忽视长期问题/深层问题。 144338 分析就分析吧,本来拉一个每日图+标注上业务动作,可以解答80%的问题(剩下20%很有可能是运维的问题,数据出错了/系统宕机了)结果不看报表,非得临时取个数,拉一堆维度过来交叉交叉再交叉,拆解拆解再拆解。最后报告没写完,指标又涨回去了。输出成果的有用性没有提高,工作量大增,不是内卷是啥。 144339 当然,数据分析领域内卷的不止这点,有卷数据产品的,有卷算法的,有卷增长的,有卷用户画像的。总之,不提高业务上有用性,单纯增加工作难度,就是耍流氓。做生意,越短平快见效的方法,越好用。 编辑于 2021-6-8 10:32
什么是商业分析?
商业分析这个词很常见。国外留学的专业有叫商业分析(Bueiness Analysis)国内也有企业挂出来岗位叫商业分析,招聘时有一个能力要求叫商业分析能力。如果扒皮抽筋看本质,商业分析就是:用数据分析方法,解决商业问题。数据分析是一个基础工具,可以运用在政策、学术、教育、体育等多个领域,当然也有企业最关心的商业领域。正是“商业”两个字,让数据分析有了完全不同的使用方法。 商业分析在目的上区分于政府的政策研究。政策研究要考虑的方面很多,比如公益事业、基础建设、政治任务等等,因此目标相对多元化,不一定每一件事都要求有经济回报。而商业分析的目标则单纯的多:提升企业效益,获得最大的商业价值。 如果再具体一点说,就是: (是什么)量化展示商业经营状况 (是多少)量化判断商业问题 (为什么)从数据角度寻找问题原因 (会怎样)利用数据预测商业趋势 (又如何)利用数据综合判断经营效果 通过量化的分析、判断、预测、总结,提高决策效率,从而实现经营效益提升。这是一个往步枪上装狙击镜,给大炮配雷达,给导弹配卫星的工作。理论上不瞄准,搞地毯式轰炸也行。但是今时今日,企业面临众多竞争,马爸爸还动不动在朋友圈“颠覆”一下某个行业,谁也没有胆子这么粗放经营了。商业分析就更加重要。 因此,做商业分析,第一步得知道商业价值是啥。传统的商业价值定义就是卖货挣钱。根据销售对象的不同,可以分为B2B(对上下游企业销售)和B2C(对终端顾客销售)两种模式,还有一种是二道贩子,通过在企业和终端顾客之间建立联系,来做中间商挣差价,是为B2B2C模式。互联网时代多了一种模式,即B2VC。大量的互联网企业其实没有挣到真金白银,但通过不断给资本市场注入信心,可以圈越来越多的钱,最后融资上市,功成身退,大捞一笔。 以上都是正经商业,当然有不正经的,就是那些“奋斗是我的性格,成功是我的目标”“选择了XX就是选择了成功”……是滴,那些拉人头传销或半传销式运作。姑且叫B2SB模式好了。这五种模式构成了基本的商业模式。有很多多元化的大集团会同时运作几种模式,或者将不同模式相互嫁接,形成更复杂的商业模式。理解了企业的商业模式,才知道到底企业有啥分析需求。才能脚踏实地的思考:到底要分析啥问题。 理解商业模式只是开始商业分析的第一步。具体到一门生意上,还有行业、产品、用户群体的区别。比如大家最喜欢说的:互联网行业,其实范围非常广泛,包含了:电商、游戏、广告、新闻、社交、O2O、VR、团购、消费贷、小额贷、保险等众多子领域,每个领域间差异巨大。而所谓传统行业,比如快消、耐用、零售、家具、美容、金融、餐饮等等,也在积极拥抱互联网,不但大力建设自己社交媒体矩阵,而且纷纷开设自己的小程序吸纳会员,开劈电商渠道拓展客户。可以说行业边界本身也在模糊,具体形态越来越多元化。 脱离具体的商业模式+行业分类,就没法谈商业分析。因为不同的商业模式+行业下,商业组织、商业目标、产品形态、经营方式、用户群体完全不同。包括数据的产生方式、数据类型、数据丰富程度都不一样。因此必须具体脚踏实地的思考:到底我们是什么模式+行业,到底我们面对什么样的需求和问题,到底我们有什么数据可以用来分析。这就像医院看病要分门别类,而不是卖一颗“包治百病丸”一样。具体思考才能有所收获。 除了商业模式+行业类型,还有第三样商业分析的必备要素:商业组织。企业都是分商业组织运行的,销售、产品、营销、运营、供应链、风控、人力等部门共同合作,才能让企业运转正常。这里就有了责任-权力-分工的问题。虽然我们可以把所有人的问题,统称为“商业问题”,但具体到某一个部门的某一个人,思考的问题,能解决问题的手段,想达成的目标都有不同,特别是分工复杂的大型集团企业。脱离组织谈分析,就经常落得心比天高,命比纸薄的下场。虽然老板们总是习惯说:即使你们月薪2000,也要有月薪20w的老板的思维。可我们真替代老板发号施令的话,估计也就被扫地出门了。 截止到这里,我们才介绍完了商业分析三大基本要素。还没谈到任何分析方法。这些看似与分析无关的东西,恰恰构成了商业分析与科学分析的最大区别。在大学里我们做的是科学分析,是学术研究。学术研究是为了探索真理,发现规律,因此做的特别理论化,特别细致深入,用到各种高大上的模型,进行反复试验论证。这些科学研究的成果,形成了大家经常看到的数据分析理论,数学、统计学、算法等等。 可商业分析完全不是这么回事。首先,企业的发展是以盈利为目的,不是以科学为目的。因此数据的记录、存储是要为经营让道的。为了尽快上系统没有做好埋点,为了尽量少打扰消费者所以放弃了复杂的登记表,为了尽力帮助销售而减少了汇报流程,这些工作都可以提高赚钱的效率,可到了做数据分析的时候就是巧妇难为无米之炊了 其次,企业面临的问题是非常复杂,且容不得重复试验的。企业的经营好坏,和政策、大环境、企业自身能力、消费者需求、突然事件等等都有关系,很难完全解析清楚。实验室里往往用重复的试验来测试不同变量的效果,可企业不容许这样。大部分商业试验是有极高的时间、金钱、人力、职场政治成本代价的。即使作分析的想多试验几次,销售、运营、产品的老板们也经不起这么折腾。一而再再而三的实验失败,可能老板都要滚蛋了。 最后,企业解决问题往往是充满创造力的,甚至是暗箱操作的。销售不好?一炮促销下去就起来了;产品不好卖?我们请了叶大师一通广告下去就有销量了;打标无望,我们收买了客户采购部的高管修改了评比标准。这些神操作已经脱离了科学范畴,不是自然规律,而是斗志斗勇的结果。指望用科学数据来分析、判断、预测就显得太苍白了。至于暗箱操作,我们自己的采购收了贿赂呢?我们的销售为了多拿提成拆单凑单呢?我们自己的运营好大喜功大干快上呢?科学研究为了接近真理,往往喜欢剔除人为影响,可商业分析却首要考虑的是人为影响。毕竟钱是靠企业里的人挣来的,不是代码一运行电脑就日日叫的往外吐钞票。 以上种种,使得商业分析师(或者是做商业分析的人)更像是战壕里的连队参谋,而不是实验室里的科学家。要听到前线炮火的声音;要很清晰的知道敌我双方力量对比;要对自己的每个军种、每个兵种特性;要知道敌我将帅的习惯,剩下的才是做军情分析,战术策划。而不是躲在潜力之外的实验室里:假设我们有10个人,敌人有1个人,我们围着他打,我们就赢了!嗯嗯,你看我已经掌握了战争的最高奥秘! 遗憾的是,传统数据分析技术培训出来的科班生,基本都没啥商业分析能力。比如目前市面上流行的商业分析课,都是第一章excel操作,第二章sql操作,第三章tableau操作,然后丢一个数据集:“假设这是某电商购物数据”。然后对着这个数据集,计算RFM三个指标,三个指标切成五段,做个k均值聚类,分成四类。一通操作以后,就恭喜学生掌握了商业分析技能了……嗯嗯,我们也可以假设这样就是商业分析了。 然后经过这么培训的新人,在企业里就会遇到一堆领导的灵魂拷问:“你看看这堆数据,你看到了啥?”“你分析分析目前有啥问题?”“你自己想想该怎么分析?” 新人颤颤巍巍的问:“那我做个RFM聚类可以吗?”领导:“你做做试试呗……”新人辛辛苦苦做完了,领导回复:“你这做的啥玩意!!!!”“你要多了解了解业!务!” 于是新人可怜巴巴的挨个问业务部门,得到的回答是:销售部:都怪市场活动没跟上市场部:都怪运营不给力运营部:都怪销售不积极…… O(╥﹏╥)o 以上种种乱象,均是过于放大了商业分析中的“分析”,忽视、甚至无视了“商业”的结果。数学、统计学、算法确实是这些内容,可如何结合到具体商业环境,如何应对商业问题,却是需要做商业分析的人有更强的商业理解,和脚踏实地、具体问题具体分析的能力。这篇文章已经很长了,感谢坚持到这里的同学,奉上一个小小的总结作为bonus 144006 更多商业分析的内容,陈老师在《商业分析入门,用数据分析方法解决企业问题》视频课程中有生动讲解。 编辑于 2021-5-24 14:27
【分析报告】数据分析报告,就该这么写!
大家好,我是接地气学堂陈老师,很高兴作为签约讲师入驻帆软社区。接下来,我会不定期在社区分享数据分析相关的原创内容,同时,我开发的《商业分析入门——用数据分析方法解决企业问题》课程也在学院上线了,有需要的可以进行系统的学习。最后,很高兴加入帆软社区,以后多多交流! ——————以下是今天分享的内容—————— 很多同学喜欢问:有没有数据分析报告模板可以抄。其实如果掌握了写报告的方法,根本不需要模板抄。而所谓的模板,为了图高大全,往往章节很多很多很多。真实工作中真这么汇报估计既把自己累死,又把听报告的急死。今天我们就还原到工作场景中,看看数据分析报告该怎么写。 数据分析报告有两种基本模式: 1、你问我答:有明确的问题要解答 2、我说你听:无明确问题,需要从常规数据中解读 今天先讲:你问我答。因为有明确问题,所以回答起来更聚焦,容易讲解。 1、初级报告 143912 请大家看上图,然后自己先作答: 昨天的销售业绩是多少 明天的销售业绩是多少 今天的销售业绩是多 思考1分钟 ▌问题1解读大家记得这个标准:一问一答,正面回答,简单清晰。昨天的销售业绩这个数很清楚的,答出来就行了。答1:昨天的销售业绩是1000万。OK,过关。 ▌问题2解读注意时间状态。明天,是还没有发生的,因此是个预测值。涉及预测,就得讲清楚:预测方法、预测依据、预测结果。预测方法有很多种,需要的数据量也不同,看菜下饭就好了。没理由领导随口问一下,你大喝一声:“呆!给我定住,三个月后我的超牛逼精准人工智能模型就好了……”所以可以简单回复,答:根据上周规律来看,明天预计1200万,比今天多20%。 当然,这种简单推测也是有前提的,见下: 143913 ▌问题3解读 回答问题3之前,先想一想,今天的数值,是预测值还是实际值?3点前的是实际值,3点后的是预测值。所以回答的时候要区分状态,答:截止下午3点,实际值是700万,按趋势推算,预计1400万。 初级报告的场景在办公室里很常见,常常是领导或业务部门随口要个数。这时候没有分类维度,只是单一指标,因此只要区分清楚时间状态,就能解答好。 2、中级报告 143914 请看上图作答: 上个月业绩情况如何? 为什么第三周业绩较前两周下跌了? ▌问题1解读 回答问题1前,先思考:这里有几个指标?这里有几个维度?第一问有几个问题? 这里只有一个指标:业绩,但是有3个分类维度:周、日、产品。很多新人会脱口而出:两个分类维度,时间和产品。请注意,时间是又分成周和日的,不区分清楚,后边回答就很混乱。因为这个指标很明显有周循环趋势,因此周这个维度是不能省略的。 这里显然不止一个问题。因为有了分类维度,所以有了整体和部分的区别。我们不能像初级汇报时候那样丢一个“总业绩是XXX”交差。遇到整体和部分,大家记得这个顺序:整体-局部-个案的顺序。在解释局部的时候,如果有多个分类维度,一般说完一个再说另一个。比如眼前这个例子,可以这么说: 143915 ▌问题2解读回答问题2前,先思考:我要答的是一个数字,还是一件事? 问题2问的是原因。注意,原因指的是一个具体影响业绩的问题,不是数字本身。很多新人在这里会犯错误,直接回答个:“下跌是因为周二、周三、周四业绩很少呀”。这么回答等于废话。要找到数字背后的问题才行。这里往往需要做一些深入的调查研究,比如当时天气如何,发生了什么事,业务做了什么控制一类。仅依靠一条数据肯定回答不了。 当然,分析出原因需要具体分析方法,这里可以参考陈老师之前的文章,但作为报告,不管中间方法有多少,最后汇报的结果得是清晰的。“因为XX原因,导致该问题。” 在我们收集过真实原因以后,我们可以做答了。注意,作为数据分析报告,单纯说:“因为第三周下雨了”是难以服众的,需要对问题原因做量化考核,具体指出每个影响因素的大小,才能服众。类似的,如果是数据错误,要指出正确的数据是什么。如果是业务有控制举措,要指出控制举措的开始,结束时间。常见的情形如下,大家可以参考: 143916 3、高级报告 我们常说:在数据分析领域,没有高级的方法,只有高难度的问题。如果所有的问题,都能像初级、中级汇报那样清晰明了,自然解答也是清晰明了。但,实际工作是:问题本身含糊不清,南辕北辙,莫名其妙。这就一下把报告的难度从初级提到高级了。比如下边这些问题: 为什么这个月业绩很差? 我们的产品体验有什么问题? 为什么我的领导会听到顾客不满意的抱怨 新人特别容易在这里栽跟头!这些问题都是看似清晰,实则一塌糊涂。和中级报告的最大区别是:中级报告是基于数据谈问题,而以上根本连基础的事实、数据都没有。这种情况下要牢记:先问是不是,再问为什么。因为:脱离概率谈个案、脱离整体谈细节、脱离数据谈现状、脱离标准谈判断,统统都是耍流氓!我们做数据分析,就是要用理性对抗感性,用逻辑性对抗情绪化,这些感觉、情绪、冲动都是我们的大敌,要坚决消灭! ▌问题1解读 回答问题1,要先摆事实,再树标准,最后再分析。可以回答: 这个月业绩数值是XXX 判断好和差的标准是(上月、去年同月、KPI指标……) 和标准对比,差的程度是(不存在,轻,中,重) 这个(轻,中,重)级别的差,是因为…… 如果问题不存在,干脆就不答了 ▌问题2解读 回答问题2,要先明确数据指标,再树标准,再分析。 用户体验的考核指标是XXX 这些指标好/坏的标准是XXX 和标准对比,有问题的地方是XXX 问题的程度是(不存在,轻,中,重) 这个(轻,中,重)级别的问题,是因为…… 如果问题不存在,干脆就不答了 ▌问题3解读 回答问题3,套路也是一样的。只不过问题3更不靠谱。面对问题3,先落实: 我的领导是谁 我的领导在什么时间、地点、以什么方式 听到了哪一个用户,关于什么问题的抱怨 落实到具体的问题,先看看是真的有这个事,还是主观臆断,还是道听途说,还是空穴来风,还是无风起浪,之后再做分析。 4、小结 我们常说:高质量的问题带来高质量的答案。针对我问你答类报告,最大的问问往往是问题本身不清楚,相互混合,真假难辨,导致报告怎么做都很别扭。
个人成就
内容被浏览2,535,903
加入社区3年244天
返回顶部