当前企业的数据分析和BI项目建设仍然以IT部门为主导。在被调研企业中,采用IT完全主导和IT强主导这两种配合方式的企业合计占比近78%,如图5所示。这一结果从某种意义上也体现出了当前的BI市场现状,目前自助式BI分析并未完全成熟,IT部门仍然需要从技术层面,来实现业务部门的大部分报表和分析需求。一旦未来几年自助式BI分析发展成熟,大部分企业的数据分析和BI项目建设将开始向业务主导的方式迅速倾斜。而且值得注意的是,个别企业已经实现了智能自助,即IT人员建设底层的数据仓库,数据处理和BI分析均由业务人员通过BI工具实现。
(1)大部分企业的数据分析和BI团队规模较小,不够成熟。
总体上来看,目前企业用以支撑数据分析和BI项目的团队仍然不够成熟。图7中的调研结果显示,仅有20%左右的被调研企业拥有5人以上的成熟数据团队,能够有力地支撑数据分析和BI项目;超过半数的被调研企业以3~5人的团队来支撑数据分析和BI项目,20%左右的企业其数据分析和BI项目建设团队仅为2人及以下;甚至有近7%的企业没有专门的建设支撑团队,采用的是个别员工兼职的方式。
图7 企业数据分析和BI项目支撑团队的规模
(2)团队成员的开发能力整体处于中等偏上水平。
从图8中的调研数据来看,被调研企业数据分析和BI项目团队的成员都具备基本的开发能力。超过半数的被调研企业表示其团队成员有一定的开发经验,常规的报表开发不是问题;26.74%的被调研企业认为其团队成员具备从数据底层到前端可视化的完善能力体系;更有9.3%的被调研企业的数据团队成员是既懂业务又懂技术的高手。当然,也有部分企业的团队成员仅会一些简单的操作,开发能力不能很好地满足项目需求。
图8 团队成员的开发能力
(3)业务理解能力是团队成员最大的能力短板。
针对团队成员能力短板的分析结果再一次证明了前文关于团队成员开发能力的结论,即团队中既懂业务又懂技术的高手并不多。如图9所示,41.86%的被调研企业认为数据分析和BI项目团队成员的最大短板在于搭建企业各业务模块分析体系的能力。这也是IT部门主导BI项目的一个缺点,企业的IT部门主要以技术运维为主,在业务方面则缺乏较深的理解。另外,有17.44%的企业认为数据分析和BI项目团队成员在数据分析思维、方法和技巧上需要进一步提高,19.77%的企业不太认可团队成员的项目价值传播能力。
图9 团队成员的能力短板
4. 价值体现
最后是价值体现,也就是企业数据分析和BI项目取得的效果,主要体现在项目运行状况、应用普及率以及扩大价值的挑战等方面。
(1)绝大多数企业的数据分析和BI取得了成功,运行状况良好。
图10中的分析结果表明,从运行状况来看,被调研企业的数据分析和BI项目还是非常成功的,仅5.81%企业表示项目访问量较低,业务部门基本不会查看。绝大多数企业的项目访问量相对稳定或较高,甚至有8%左右的企业其数据分析和BI项目受到了全公司的关注,很好地支撑了领导层决策。
图10 已上线数据分析和BI项目的运行状况
图11 数据分析和BI项目在不同部门层级的应用普及率
(2)数据分析和BI项目的整体应用普及率一般,在IT部门的应用最为深入,在领导层的普及率仍有待提升。
当数据分析和BI项目在某一部门层级的应用普及率达到60%以上,我们就认为项目在该部门得到了较为深入的应用。根据调研数据,66.74%的被调研企业至少在领导层、业务管理层、业务执行层、IT部门中的某一部门层级得到了较深的应用,因此整体来看,项目的应用普及率只能算是合格。
另外,如图11所示,一个非常明显的趋势是应用普及率随着领导层-业务管理层-业务执行层-IT部门的顺序上升。大部分被调研企业的数据分析和BI项目在IT部门应用得比较深;仅36.05%的被调研企业,其数据分析和BI项目在领导层得到了较深的应用。也就是说,越偏向于执行层级,数据分析和BI项目的应用普及率就越高。结合前面的结论,虽然管理层级对企业的数据分析和BI项目较为重视,但是最终能普及到他们的应用却仍然不够。而如何让企业的管理层更好地应用BI,发挥出BI的最大价值——决策支持,是企业接下来需要重点思考的问题。
(3)企业的数据应用成熟度集中在业务洞察阶段,整体处于中等水平。
如图12所示,被调研企业的数据应用成熟度表明,大部分已上线BI的企业处于“数据间接产生价值”的阶段,即通过数据来驱动企业决策和运营。其中,超过半数企业的数据应用处于业务洞察阶段,他们通常使用统计分析、预测分析以及数据挖掘技术,来提示重大、相关的业绩改善建议;31.4%的企业仍处于业务监测阶段,他们通常应用传统的DW和报表方式,监测现有企业业务的运行状况。值得注意的是,虽然整体上来看,企业数据应用成熟度并不高,但是也有近12.8%的企业处于“数据直接产生价值”的阶段,他们往往通过业务重塑发现新的商业模式,产生新的盈利手段,而且这一比例较去年是有所提高的。按照这一趋势,未来会有更多的企业进入业务重塑和数据盈利阶段,数据将真正成为企业的生产力。
图12 企业数据应用成熟度
(4)企业在进一步扩大BI产出价值上存在不小的挑战。
面对当前数据分析和BI项目的应用效果,企业要想进一步扩大BI项目的产出价值,需要克服不少困难。图13中的词云图表明,被调研企业认为最大的四项挑战分别是数据人才的培养、数据的整合与治理、与管理层及业务部门的配合、以及IT部门自身的能力提升。具体地,被这四个问题困扰的企业均超过50%。
另外,衡量数据分析的价值产出、公司重视程度或预算投入这两项挑战也占据了较大的比例,占比均超出40%。另外,有20.93%的被调研企业在数据分析工具的选择上存在困扰,而BI工具选型的确是项目成功与否的关键一环。还有13.95%的被调研企业认为,项目风险的控制也是BI价值产出的一道阻碍,风险控制不善将会给企业带来非常大的损失。
图13 企业扩大BI价值产出存在的挑战
二、获奖企业优势
在前文中,我们对参赛企业数据应用的整体情况进行了分析,包括各项影响因素和应用效果,但是我们依然无法判断出哪些因素对应用效果有较大的影响。因此,我们将数据生产力大赛的获奖企业筛选出来,对他们的优势进行了进一步的分析,得出以下结论。
1. 获奖企业的数据应用效果优于未获奖企业
从价值体现,也就是最终应用效果的角度来看,获奖企业的数据应用效果要明显优于未获奖企业。这一结论也从证明了帆软数据生产力大赛的专业性和公平性。
(1)获奖企业的数据应用普及率明显优于未获奖企业
调研数据显示,获奖企业的数据分析和BI项目的整体应用普及率达到了78.26%,明显高于所有企业综合得到的数据66.74%。并且如图14所示,除了领导层应用普及率的企业占比类似,获奖企业的数据分析和BI项目在其他部门层级的应用普及率均高于未获奖企业。尤其是在业务管理层,应用较深的获奖企业占比达到了56.52%。这一结果表明数据分析和BI项目在获奖企业的管理层级中也得到了较为深入的应用。
图14 获奖企业的数据应用普及率
图15 获奖企业的数据应用成熟度
(2)获奖企业的数据应用成熟度要高于未获奖企业
从数据应用成熟度来看,获奖企业的表现也比未获奖企业要好。具体表现在处于业务监测阶段的企业占比有所下降,从整体的31.4%减少到了21.74%,如图15所示。如果将未获奖企业筛选出来,数据差将会更大。相应地,处于业务洞察以上阶段的企业占比则有所增加。
2. 影响企业数据应用效果的主要因素在于人
通过对获奖企业的价值定位,工作状态和专业能力三个方面的影响因素进行分析,我们发现获奖企业与未获奖企业的主要区别体现在人的层面,包括工作状态方面的部门配合效果、专业能力方面的团队规模和成员开发能力。
(1)获奖企业的团队配合效果要明显优于未获奖企业
图16中的调研数据表明,获奖企业中,业务部门与IT部门配合效果一般的企业减少了很多,所以最终配合效果在顺畅以上的企业占比高达91.3%,较整体情况有了不小的提升。
图16 获奖企业的业务部门与IT部门配合效果
(2)获奖企业数据团队的专业能力要高于未获奖企业
调研结果显示,不论是团队规模还是团队成员的开发能力,获奖企业的表现均高于未获奖企业。在团队规模上,获奖企业不存在个别同事兼职运维的情况,5人以上成熟数据团队的企业占比也有小幅的提升,如图17所示;在团队成员的开发能力上,仅会简单操作的企业占比从整体的12.79%下降到了4.35%,相应地,数据团队拥有完善能力体系成员的企业占比、拥有高手成员的企业占比均有所提高,如图18所示。
图17 获奖企业数据分析和BI项目支撑团队的规模
图18 获奖企业团队成员的开发能力
三、结语
BI已经成为企业精细化运营不可或缺的一部分,其价值无需多言。除了资源投入、基础设施等要素,数字化转型同样离不开人的支持。图13中的结果表明绝大多数企业已经意识到了这一点,这也为企业后续的项目实施提供了指导方向。数据人才的培养、团队配合效果的改善将是企业在下一阶段的行动关键。期待BI在越来越多的企业中发挥价值,让数据成为真正的生产力。