*本文为2022中国数据生产力大赛金奖案例,未经授权禁止转载!
纵观全球,医药创新不仅可为经济发展提供长久动力,更是解决民生问题的根本要求。
一款有效的好药诞生,标志着国家制药工业的发展水平,而且能根本性地改变某种疾病的治疗状况,造福国家乃至全人类。石药集团“做好药,为中国,善报天下人”的企业使命也是源自于此。
石药控股集团有限公司是一家集创新药物研发、生产和销售为一体的国家级创新型企业,跻身2022年度全球制药企业50强排行榜,国内排名位居Top5,为国内新药研发龙头企业。全集团现有资产总额580多亿元,员工2.7万人。
目前在冀、晋、鲁、苏、赣、津等省市设有10余个药品生产基地,产品销售遍及全球100多个国家和地区,有36个品种单品种销售过亿元。
研发是医药企业的生命线,国际医药巨头的经验表明,研发是构建持续增长和核心竞争力的关键。
石药集团作为国内头部药企,创新药的销售收入已占到集团一半以上,成为集团的中流砥柱。集团投入多达几十亿的研发经费来支持创新药的研发,临床试验是其中关键的一环。
当前石药集团临床试验项目数达300多个,年研发投入35亿,研发团队规模超2000人。但对于临床试验项目的管理,还是以传统的人工管理方式为主,存在进度管控滞后、信息更新不及时、过程管理不规范等弊端,导致大量人力、物力、财力等研发成本的浪费,投资收益比明显不如预期。
近年来国内外同行纷纷加大对创新药研发资源投入,市场竞争日趋激烈。同时,国家又陆续推出“带量采购”等新医改政策。在如此大环境下,加快研发速度、提升研发效率和质量、控制研发成本、加速上市抢占市场是集团突出重围的唯一路径。
药物研发是一项高风险、高技术、高投入、长周期和精细化的系统性工程,一款创新药的研发可能需要数十年的时间,耗资可达数十亿美元,临床试验是其中重要一环。
开展临床试验涉及多方合作,如:研究中心、患者、CRO、实验室等等,管理难度非同一般。如何高效与各方合作,互利共赢,最终促使临床试验能够用最少的时间和资金投入,保证试验质量,降低各种风险,通过国家药监局核查、审批、上市是临床医药研发管理层梦寐以求的解决方案。
药物研发流程环节及耗时
摆在研发管理层面前的关键难题如下:
1)如何从整体层面把控项目进展
不同的管理职能,对于项目数据的查看维度和分析角度不尽相同。当前是使用Excel逐级填报和汇总的形式,由于统计口径和要求不一致,一线业务人员(CR+A)往往需要同一个信息反复填多遍,才能满足不同管理部门的汇总和统计需求。
就拿受试者入组这一关键步骤来说,部门1和部门2对于受试者的入组计划的制定标准不一致,部门3和部门4对于受试者实际入组情况的统计标准也不一致,按照这些标准得出的完成进度(实际/计划)也是不同的。
带来的后果就是:
-
CRA填报操作频繁,工作量重复,数据的准确性无法保证;且CRA耗费大量时间在数据收集和填报上,无法投入足够的精力在研究中心的核心工作上,反而影响到项目效率。
-
各管理部门汇总出来的数据是割裂的、分散的,往往只从自己部门角度去分析,无法从整体层面来进行数据联动或钻取,多维分析很难实现。
试验质量与进度均与试验推进情况强相关。目前入组进度数据通过Excel层层汇总可收集上来,存在一定的延时,并且数据真实性无法保证。
同时临床试验里程碑数据及质量数据存在严重的滞后性,往往某个质量或进度问题已经持续很长时间,领导层却无法获知、无法及时干预,等到决策层给出调整方案时,针对的问题已经发酵变质,错过了最佳整改时间。
诸如此类场景多次发生,造成资源的极大浪费。获取实时数据,亟待解决。
药品研发如同淘金,费时费力费钱,需要精打细算、节约成本,用最少的资源换取最高的获益。
临床试验中的物料、人力、资金等资源投入落实到具体项目之上,需要做到最细粒度的拆解,评估其合理性和风险性,并与预算做差异分析,才能够去评测每一个临床试验的投入产出比,并为后期的项目投入提供参考。
结合目前事业部困境及临床试验行业现状。要实现上述业务诉求,面临极大挑战。主要分为以下三个层面:
主要体现在以下2个层次:
-
临床试验整体数据链条涉及众多的应用系统,如:IRT、EDC、CTMS、PV、eTMF、ePRO等,各应用系统分别服务于临床试验的某个环节,自成体系,分别有各自的数据管理要求和统计维度;
-
随着临床试验项目逐年增多,提供更细化服务的系统供应商也逐渐增多,且应用系统均为SaaS架构,导致试验相关数据分散存储于不同系统供应商平台,无法实现统一的数据管理、调度。
目前,数据仅仅用来撰写临床试验报告,及试验完成后递交给国家药监局审查,偏向于结果类数据。
实际上,临床试验整个数据链条背后隐藏着每一类试验的关键节点、进度、质量、财务是否合理等过程信息,涉及临床试验运营的方方面面,商业数据价值目前还是一片蓝海。
如何把数据用“活”是对数据分析团队最大的考验。通过数据分析手段将临床试验整个数据链条沉淀下来、体系化、标准化,构建业务评价与数据分析指标体系是需要结合业务去探索的技术难题。
解决这些难题,才能让数据流动起来,从而达到提升团队工作效率,节省投入成本,保障临床试验质量的目的。进而加快试验推进进度,促进临床试验精细化运营,真正实现用数据创造财富。
为了解决相关的业务管理诉求,我们提出了“三步走”战略方针目标。
信息共享平台,旨在解决数据汇聚及标准化的问题,尽可能整合临床试验整个数据链条。
我们搭建了数据仓库,通过简道云、集成接口对接等手段,将分散在各应用系统里的数据,汇聚到数据仓库里,再结合实际业务逻辑及数据治理等手段,实现数据的统一化、标准化、体系化。
在此基础上,构建业务评价指标体系,使用FR/BI对信息按层次,分类别整理汇总,使得不同用户依据相应权限能够实时获取相关数据服务。
-
-
-
-
使用FR/BI开发相关数据报表,集成企业微信,实现数据获取、汇聚、集成、治理、查看一站式服务,且能够自动推送相关数据报表。
运营分析平台,旨在解放一线业务人员的Excel式数据收集汇总的问题。
借助数据仓库,建立起业务评价指标体系,并使用BI构建相应的主题式数据分析模型,依据数据使用需求分层,分别为高层、中层、基层的使用者提供数据服务:
-
高层:集团CEO/副总裁通过驾驶舱从集团整体层面把握试验涉及的人、财、物、进度等各方面的执行情况,以明确执行情况与企业战略保持一致;
-
中层:临床试验各级负责人借助仪表板,可实时掌控临床试验进展数据,借助上卷下钻、数据联动等功能,能够多角度分析问题;
-
基层:一线业务人员能够使用数据,借助BI自助式分析,进行自主分析、探索,将更多的精力放在发现问题,落地策略,优化现有业务上。
通过以上举措,逐步形成人人用数据,人人懂数据的数据生态圈。
-
构建评价指标体系
-
选择切合的数据分析模型
-
构建数据BI看板体系
-
培养自助分析核心用户
-
营造数据分析文化
-
业务指标体系分类
目前处于探索阶段,规划实现后的功能如下:
-
各应用系统数据回流数据仓库之后,依据相关业务逻辑,设计算法,推算出相关模型的风险因子,通过简道云/BI的数据展示,集成企业微信,自动触发相关消息或流程,推送给相关负责人。
-
各负责人接收到相关风险因子后,及时讨论解决方案,快速落地相关策略,通过最新回流数据验证策略效果,从而实现智能循环。
-
通过各种模型(项目风险评测模型/财务健康度评测模型/人员绩效评测模型等),结合行业经验,构建智能决策平台。
为保障整体方针目标落地,团队内部引入了敏捷开发方法论。结合团队的实际情况,分工图示如下:
内部敏捷开发流程
1)一线业务人员(CRA)往往需要同一个信息反复填报多次,才能满足不同的管理部门的汇总和统计需求,数据不及时、不准确。
2)各项目PM的调整记录无法追踪,各领导的审批过程也无法留痕。
1)对现有的临床试验数据信息进行了重新梳理,标准化、规范化各字段取值;将现有通用型数据划分成主数据,其他业务强相关数据划分到各模块。
2)使用简道云针对上述模块创建了相关流程表单和普通表单,同时将数据仓库与简道云通过数据接口互通,实现简道云的数据直接汇聚到数据仓库。
3)在数据仓库做好数据加工后,选择相关的数据集市,使用FR/BI进行数据可视化呈现。同时将数据仓库的部分数据回流到简道云的普通表单,作为基础数据,智能触发相关流程的自动发起。
流程式数据收集及回流方案
1)数据仅需录入一次,可在多处重复利用,数据重复使用率提升了20倍,实现了临床试验信息的共享;
2)简道云的数据联动/数据关联等智能组件,使手动录入数据工作量降至之前的1/4,大大提升数据采集效率;
3)实现数据口径统一管控,降低部门之间因数据是否准确造成的沟通成本,沟通时间降至原来的5%;
4)实现简道云——数据仓库——FR/BI(数据应用)的数据自动化流转,人工整理数据的误差降至1%以下,保证了数据的准确性;
5)实现了数据实时录入、实时查看、实时分析,数据利用效率提升了80%以上。
EDC作为临床试验电子数据采集系统,是开展临床试验项目必须使用的电子系统,其功能强大,模块众多。但是存在如下2点弊端:
1)搭建临床试验数据生产环境耗时较长。
2)EDC系统服务合同动辄几千万,且不随方案设计复杂度而灵活变动,实际使用过程中,会存在部分资源浪费。
解决过程:
1)针对方案设计较为简单的临床试验进行整体梳理、归类;提取出共性的eCRF标准化表单,对字段、表单、逻辑分别整理成标准模板;
2)依照整理出来的标准模板,基于简道云搭建简版的EDC环境(标准版本);
3)针对方案设计中比重较小的个性化的需求,再依照单个临床试验项目需求去单独设计。
1)提升效率,使用简道云搭建的简版EDC环境的标准版本涵盖了85%以上的功能,且只需搭建1次。
2)节省工时,同时优化了人力资源配置,使得相关同事有更多时间去梳理、完善标准eCRF,进一步搭建不同适应症的标准版本。
3)节省开支:作为现有EDC系统的一种补充,同时也节省了等价于现有EDC上的费用支出300多万元。
BI系统上线之前,临床试验运营数据主要由各业务部门从不同的业务系统导出进行人工统计,书写汇报PPT,在领导层会议上进行汇报。这种人工统计的方式存在诸多缺点:
1)取数困难,人工登录多个系统、导出、核对,耗时耗力;
2)展示效果差,不能全方位分析,无法实现数据联动、上卷下钻等功能;
5)数据造假,不能杜绝
解决过程:
为解决以上痛点问题,我们计划打造一个以整合临床试验整体数据链条为目标,展示整个研发事业部产生的数据价值,以临床试验运营效果的变化为依据,实时反映临床试验运营状况的运营分析平台。
临床试验运营分析平台通过直观易懂的图表,多维度、多视角分析经营数据,层层钻取,深度挖掘数据价值,为管理层提供高效可靠的决策依据与数据支撑。
相较于传统的汇报方式,运营分析平台通过数据自动化汇总,提高数据统计效率80%。优化业务流程,减少了60%以上的重复性工作。业务人员从数据统计中得以解放,回归到本职工作当中,企业效率提升30%。
1)借助简道云,手动录入数据工作量降至之前的1/4,平均构建EDC时间降至原来的1/5,标准eCRF迭代升级的周期降至原来的1/4,作为现有EDC系统的一种补充,同时节省了EDC费用300多万元;
2)通过数据汇聚、构建数据仓库、数据治理,因数据准确与否的沟通时间降至原来的5%,人工整理数据的误差降至1%以下,数据利用效率提升80%以上,数据重复使用率提升20倍,减少了60%以上的重复性工作。
3)利用Fine BI及FR展示数据、突出问题,在业务层面做出如下成果:
在中心筛选方面提供数据依据,精准选择最佳研究中心,整体时效缩短15%;
针对各类研究中心,原因定位迅速,落地相关策略后,使得入组率提升近20个百分点、脱落率降低5个百分点;
针对入组达成,原因定位精准,落地相关策略到位,整体达成率相比之前提升了近10个百分点;
质量稽查方面,可迅速定位主要问题,整改目的性较强,进而推至其他研究中心,后续稽查工作量有望降低30%;
财务风险方面,可从试验、中心、合同,逐级定位,迅速查找风险点,落地规避措施,粗略统计,规避风险金额可达数百万元。
整体上讲,提升临床试验运营效率50%以上。
石药集团借助帆软的产品(BI、FR、简道云),以整合临床试验完整数据链条为基础,打破临床试验各应用系统的数据壁垒,结构化、流程化、成体系的将临床试验相关数据沉淀下来,利用起来,推进临床试验管理由人工决策向智能决策的转变。
也期盼着有更多的国内医药企业加入我们,共同推进临床试验的数字化转型之路,为民做好药,创造社会价值,为国民身体健康做出应有的贡献!
注:为了便于在手机端阅读,本文对材料内容做了删改,感兴趣的朋友可以点击阅读原文查看原帖。 |