找回密码
 立即注册

QQ登录

只需一步,快速开始

请上传宽度大于 1200px,高度大于 164px 的封面图片
    调整图片尺寸与位置
    滚轮可以放大缩小图片尺寸,按住图片拖动可调整位置,多余的会自动被裁剪掉
取消
一切都值得(uid:186120)
个人标签:数据分析,数据可视化,数据中台,数据运营,数据管理 职业资格认证:FCP-业务分析师 | FCP-FineBI | FCP-报表开发工程师 | FCP-零代码开发工程师
求助:关于Excel导入的区分
Excel导入和覆盖导入的区别是?    
【2022BI数据分析大赛】网上超市经营数据分析系统
队长:李和平;队员:赖石娇、闫梦琪、刘安骐;队名:清华北大落榜生。 一、背景介绍 1.1作品引言       这是一份工程量巨大的作品,因为它包括了1个首页+6个主题的内容。本来想早早把作品发出来,带带节奏,提高所有参赛选手的作品质量和创新方式。可因为内容太多,所以拖到了现在才收工。开始,大家还讨论要不要就选择其中一个专题深入分析就好,但后面觉得不够全面不够透彻,同时觉得这有点“配不上”导师这个身份。所以,在达成一致意见后索性就做成一个“分析系统”,把比赛内卷推到顶峰。       作品的思路来源于公司内部用FineReport做的其中一个项目,统一由一个首页跳转到不同的报表界面,这样就很好的解决了数据分析人员、业务人员看相关报表时找不着或者很难找的痛点。因为FineBI主要对象面向于业务人员,于是作品在原来的思路上也做了一定的扩展。为了满足业务人员的学习需求,于是把其中几个强相关的学习地址也通过链接的方式放到了系统首页,这样既满足了业务人员工作的需要,同时还能满足业务人员学习的需要。   1.2业务背景       网上超市是指基于互联网的在线超市销售平台,为消费者提供物美价廉、种类丰富的超市商品批发、零售服务,这是一种新型的购物方式。目前,网络超市的竞争越来越激烈,在这种情况下,经营超市需要的是自身的管理和比其他普通超市优越的赢利点,而不是随波逐流的模仿和跟风。所以,对经营(运营)数据的分析显得尤为重要。       本作品以某超市在2014-2017年共计4年的经营数据作为数据源,结合本公司某零售电商子公司的数据应用项目的分析思路,围绕配送分析、商品分析、利润分析、退货分析、客户分析等方面进行全面深入的分析。全面透彻的掌握经营情况,发现问题、发现爆款、发现利润点,让经营可知可控可预测,让经营因数据分析变变得更加健康。   二、作品框架       作品的内容包括了1个统一入口(含学习链接)首页+6个分析专题,其中这6个分析专题包括了整体核心指标、配送、商品、利润、退货和客户等内容。主要分析内容概述如下:       ①核心指标概览:经营指标汇总;商品销售怎样?经营趋势怎样?       ② 配送数据分析:商品配送延期情况怎样?怎样才能选到最优的快递?       ③商品数据分析:由哪些明星产品和哪些亏损产品?       ④利润数据分析:哪些区域和用户能创造更大的利润?哪些产品利润有问题?       ⑤退货数据分析:退货趋势怎样?退货主要集中在哪些商品?如何避免?       ⑥客户数据分析:消费者分布如何?有哪些消费特征?   三、数据加工       数据来源于某数据产品内置数据库的网上超市经营数据(美国),整个过程包括了解释翻译字段,选择分析字段,删除重复数据,删除无效数据,一致化处理等。最终结果如下。(非作品重点,具体过程略)   四、分析过程 4.1核心指标概览       整体把握核心经营指标,包括销售指标、利润指标和用户指标,同时大体了解商品销售情况以及历史经营情况。       小结:数据结果显示,畅销商品主要集中在技术类产品。从2014年-2017年,经营情况呈现不断增长的趋势。同时,销售具有明显的季节周期规律,第四季度销售增长特别明显,建议提前做好商品库存储备。   4.2配送数据分析       现代的物流配送在区域范围内,根据客户的要求对物品进行挑选,包装,组配等。本作品主要研究各种快递物流的延期情况,以便商家和客户选择更好的快递合作商,避免因为快递物流原因造成的退货发生。       小结:数据结果显示,标准物流的选择占比最高(猜测是因为价格原因),超过了一半,但其延期发货情况较为严重;在不考虑物流价格等其他因素的情况下,建议优先选择一等物流。   4.3商品数据分析     “用数据说话”,用商品销售分析去证明销售成果是非常有说服力的。本次作品中,经过简单的讨论,我们主要围绕各品类销售占比、畅销商品、商品波士顿矩阵和帕累托以及相关明细表等分析方法和数据去发现产品销售的规律。       小结:该超市的明星产品类别主要有手机、餐椅、存储柜等。其中,桌子类虽然销售额占比较大(9.48%),但其利润为负数。同时,特别关注图3波士顿矩阵第二象限的产品,该产品利润非常高,但销售占比却很少,应该继续扩展市场和加大宣传。   4.4利润数据分析       经营的一切着陆点都应该是利润,所以接下来我们要对利润做几个方面的分析,包括区域利润分析,客户利润分析,产品利润分析。       小结:该超市的商品在不同的消费群体、区域的销售利润存在一定的差异。①普通消费者的利润最大,特别是技术和办公产品利润优势特别突出,其次是小型企业,公司利润最小。②区域中,西部市场所获得的利润最大,其次是东部。为了开拓市场和提升例如,建议在中部和南部地区扩建仓库。③家具品类的餐桌、书架产品亏损严重,应重点关注,特别重视物流运输、市场费用和其他成本费用。   4.5退货数据分析       在本作品中,退货分析将围绕退货总体情况、历年退货情况、商品退货情况和退货区域等多个角度进行分析。       小结:①退货金额为5.76万,退货订单为718单,退货数量为2848。②历年以来,退货情况有所好转,用户退货有逐年下降的趋势。③办公用品退货情况较为严重,其中,binders(胶粘)用品极为明显。       数据显示,退货情况较为严重,建议商家通过严把生产(或采购)质量关,减少运输、包装、装卸、配色等环节的失误和损耗,利用信息技术最短路径等方式达到这一目的。   4.6客户数据分析       客户细分是为了能够深度分析客户需求,更好的应对客户需求的变化。通过合理,系统的分析,企业可以知道客户有哪些需求,分析客户的消费特征,更好的为运营提供可供选择的运营策略以及未来规划。       小结:①该超市重要客户占比较大,经营较为健康,应该继续重点关注重要客户,及时提供有效、高质的服务。②普通客户数量409个,占比最多;且其销售金额和销售数量以及订单数等指标也最多,应该作为重点关注和维护对象。   五、结论建议       ①配送专题:数据分析结果显示,除了一等物流,其他类型的物流发货延期较为严重;建议相关工作人员注意监控发货的及时性,同时在不考虑其他因素的情况下推行一等物流,避免因为延期发货而造成的退货现象发生。       ②商品专题:数据显示该超市的明星产品类别主要有手机、餐椅、存储柜等。其中,桌子类虽然销售额占比较大(9.48%),但其利润为负数;建议保障第四季度明星产品的库存,同时对亏损产品做专题诊断。       ③利润专题:该超市的商品在不同的消费群体、区域的销售利润存在一定的差异。消费群体中,普通消费者的利润最大,特别是技术和办公产品利润优势特别突出;区域中,西部市场所获得的利润最大,为了开拓市场和提升例如,建议在中部和南部地区扩建仓库;需要注意,家具品类的餐桌、书架产品亏损严重,应重点关注,特别重视物流运输、市场费用和其他成本费用。       ④退货专题:办公用品退货情况较为严重,其中,binders(胶粘)用品极为明显;建议做好整个供应链环节的数据分析和跟踪动作。       ⑤客户专题:数据显示,重要客户占比较大,且在客户类型中普通客户类型为主要消费群体;建议做好普通客户群体的客情关系维护的同事,发展小企业用户和公司用户。   六、参赛心得      这是第三次带队参加比赛了,是最“折磨”的一次,也是最有成就感的一次。自己一个人带领了十几条队伍,有报告形式类的,有PPT形式类的,有系统类的,虽然内容方面因为公司保密需要的原因,提供的企业案例不多,但作品质量上应该也算是合格,应该勉强对得起导师这个身份。       其实,本作品完成可以把作品内容拆成6个人的6篇作品,大家每个人各自参赛就好了。但为了显示“创新”和“用心”,所以几个人硬是花了整整快一个月坚持了下来(苏瑞老师让我报名导师的时候就开始构思作品了),过程太多感触,在此只说五个字“一切都值得”。感谢队友提供的思路,以及周末的一起战斗。虽然也有小插曲,为了统一配色和风格,大家因为意见不一致,还吵了一架,幸运的是,因为有着同一个目标,大家越吵感情约好。       其实,参加比赛的过程真的很可贵,它会促使你去思考,去创新,去成长。虽然可能这是我的谢幕赛了,但我会一直持续带领更多的伙伴们去参加帆软的数据分析大赛,让大家借助这样的机会和平台更快的成长。         关于FineBI,从4.0用到现在,彼此互相成长,对它的爱,就不在描述。再次借这次BI数据分析大赛的机会,“吐槽”它所欠缺的部分。   l数据管理部分 ① 数据集表头不可直接排序,影响对数据的直接检查(升降序) ② 数据集不可直接导出(有些用户只是想导出即可,做个明细表再导出就多余了) ③ 数据集建立了关联视图后不能直接应用(还需创建自助数据集) ④ 抽数部分(spider)缺少集群功能,单节点太危险(听说后续版本会完善)   l组件(仪表板)部分 ① 组件类型偏少,比缺少甘特图、箱型图、茎叶图、等组件 ② 颜色、形状属性应用组件较少,比如指标卡的上升、下降 ③ 钻取设置还不够简便,可参考tableau实现方式进行完善 ④ 组件样式->格式->显示序号,不能跟随字体的居中设置 ⑤ 仪表板悬浮布局并不友好,可参考FineReport的绝对布局完善   l平台管理部分 ① 非超管不能做资源迁移,造成了极大困扰,各业务中心发版得依赖超管 ② 收到他人的分享仪表板缺少信息提醒,不自己打开查看一下都不知道   七、作品展示 1、分析系统动态展示图     2、作品合并长图
波澜也好,涟漪也罢,记得用心对待
没有波澜也没有涟漪,课程就这样结束了。其实,对于我来说,初衷是想通过业务班来取经,想帆软的老师学习一下面对业务用户,我该以怎样的方式去进行更好的业务使用培训和课程知识点的裁剪。第一视频学习遍过去了,好像和标准班没什么大的区别;于是我再2倍速看了第二遍过去,发现区别就是裁剪了部分比较深入的知识点,作业也稍微没那么难,知识框架和作业量大同小异! 具体学到什么,就不赘述了。没有全部作业得到满分,本来就是一种失败;要是再没有拿第一名,更是一种惨败。最终的结果是,失败了但还好没有惨败。说说自己对课程的一些看法吧! ① 关于入门:其实,业务人员在学习的时候,最希望能最快了解整体的情况。应该花个十分钟左右的时间,把“数据准备→数据加工→数据可视化→数据共享”的总体制作过程大致的了解,并吸引到大家。 ② 关于作业:有一次觉得作业量太大了,总让人有种感觉“建议你们学业可以提,但我们不采纳”。作业应该简练,突出重点知识,剩余的锻炼交给工作中的应用实践吧。我敢保证,很多同学因为作业量放弃了课程的完整学习。 ③ 关于授课:大家交了学费,交过听的永远都是录播课。如果有直播课,加强互动,提问和解答,这种授课方式会不会效果更好呢?当然,这有待尝试和验证! ④ 关于结业:现在的结业标准好像是“作业60分以上”,结业其实以为着在工作上开始应用了。如果把所学的知识融合在工作中,以工作应用作为结业标准的其中一个要求,会不会效果更好呢。 在此多说一句。很想知道,最终报名的有多少人、放弃作业的有多少人、不及格的有多少人,以及咱们帆软的运营团队有没做相应的数据运营,找出原因和整改措施。这样可以给企业做培训推广的有更好的借鉴! 最后,无论课程怎样,大家既然抱着学习和进步的心态来到了这个班级,就算在忙碌也应该去完成自己的学业。对得起自己的报名费和最初的热情。过程中的波澜也好,涟漪也罢,记得用心对待!只要你认真学习,总会学到很多你以前没能掌握或者遗漏的知识,孰能手巧,一遍不行就两遍,只要用心,知识一定会给予你很好的回报!  
一篇读懂零售数据分析
作品结果展示如下:
其实我还不够优秀,你也是
2017年开始接触,2018年深入研究,直到现在的离不开也弃不了。2020年自己分别获得了帆软冬季可视化挑战赛的“企业特别奖”和“十佳数据故事人”。如今,自己也已经成为了公司“自助分析工具”的运营推广主要力量,在公司数字化的道路上承担着重要的任务。 其实,并不是因为自己不会或者有多浓烈的兴趣,才加入FineBI【2102】学习班级。而是因为自己应部门“要求”要在3-5月开设《BI可视化工具应用与运营推广》班级,去提升团队的BI工具应用能力、项目管理能力和运营推广能力。所以,这次系统学习的目的,是因为我觉得自己还不够优秀,是为了查漏补缺,为了让自己在上课过程中面对学员的问题更加的游刃有余。 当然,除此之外。更多的可能也是自己想真正成为FineBI的专家,把相关技术细节都研究透彻,能够更好的为公司可视化开发、数据分析师或者业务人员提供更好的帮助和服务。并且,自己公司前面一期的4个学员(用企业培训基金帮忙报的)的情况都不太妙,要么直接放弃做作业了,要么也都只有七八十分,只有一个坚持到了最后考过了资深认证。他们期间有“求助”过帮忙指导作业怎么做,自己也时不时去研究过,觉得确实有点难度,所以更加想接受这样的挑战,去真正的系统提升自己。 学习期间,我给自己制定了个人学习计划。1、工作日空余时间(主要是中午和晚上)完成课程视频学习及观看直播答疑;2、周末两天必须按照“数据准备-数据加工-数据可视化-数据共享”的思路完成所有的课程作业。哪怕熬夜,也不能拖到工作日;3、对于自己遗漏的知识点,一定得看第二遍并做好笔记。 通过严格实行这个学习计划,课程学习、工作、生活并存,并没有给我造成太大的困扰。并且自己还同时报了数据运营官的课程(过年假期因要求老师提前给我开放所有视频看完,作业待完成而已),平时偶尔还在班级群里回答一些问题,帮助大家了解产品或者做作业。说句实话吧,课程视频其实讲得还是很系统,知识面涉及的比较厉,但课程作业还是很有难度,自己也表示理解前面几个报了班级的同事的情况。    自此,也借助这次结业总结的机会,给帆软产品团队、运营团队等提几点建议吧。 1、关于课程:课程内容应涉及比较常用的“系统管理”内容,比如用户管理、权限管理等;课程内容应该及时更新,而不是录一次用几年,用户体验感非常不好,版本都不一致了。 2、关于作业:作业的量还是有点偏多了,对于刚接触BI的成员且是上班一族报了班级,意味着丧失了周末的所有时间,而且很多作业有重复的嫌疑, 3、关于产品:产品版本的更新,应该是功能的迭代与性能的优化,而不是直接砍掉原来旧版本的功能,这样极有可能会导致用户放弃使用。 4、关于认证:关于初级的认证,其实有很多题目是错误的,并且不同的版本有不同的答案,希望帆软团队能及时更新题库;关于资深的认证,希望根据课程增加系统管理部分,同时建议降低一下难度,并且不要限制不能使用“SQL数据集”,因为只要把问题解决,自然什么办法方便,就用什么办法;    参加这期班级的学习,虽然牺牲了这一个多月的周末的时间,但是还是用几个字来给总结吧——一切都值得。因为作业内容涉及的比较全面,除了理论题,实践操作题基本上都需要从业务、方法、产品功能等角度去思考相关作业,这也让我的思维突然开拓了不少。同时,自己也补充了不少的知识盲点,比如说“过滤组件不绑定字段怎么实现过滤”,以及新旧版本之间的对比和缺陷。通过这次系统的学习,丰富了自己的运营分析思维及产品思维,对个人工作有很大的帮助。昨天,自己也已经成功提交了资深BI工程师的考卷,大体上还比较满意自己的答题效率和做出来的答案。自己也一定会深入研究FineBI的每一个新版本,继续加油,真正成为帆软产品的专家! 最后,以一句话和番薯们共勉作为这次学习总结的收尾吧。“当你失去了学习的动力的时候,记得提醒自己:其实我还不够优秀!”。 编辑于 2021-9-22 08:33
作废贴
    作废贴(2021年1月) 编辑于 2021-9-21 15:40
作废贴
     作废贴(2020年12月) 编辑于 2021-9-21 15:39
个人成就
社区核心粉丝
内容被浏览96,653
加入社区4年59天

联系社区管理员|联系帆软|《帆软社区协议》|手机版|帆软社区|Copyright © 帆软软件有限公司 ( 苏ICP备18065767号-7 )

GMT+8, 2022-12-5 23:07 , Processed in 0.500519 second(s), 63 queries , Gzip On.

返回顶部